If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-10x-65=0
a = 3; b = -10; c = -65;
Δ = b2-4ac
Δ = -102-4·3·(-65)
Δ = 880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{880}=\sqrt{16*55}=\sqrt{16}*\sqrt{55}=4\sqrt{55}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-4\sqrt{55}}{2*3}=\frac{10-4\sqrt{55}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+4\sqrt{55}}{2*3}=\frac{10+4\sqrt{55}}{6} $
| 18x-10=28+12x | | 6x+40+-10x+65=117 | | a—4/5=12 | | 7=7(m+49) | | 23/4=x/2 | | 3c-8c=-5 | | -c^2-8c+33=0 | | 3/2y=45 | | 1=h/10-1 | | v/7-3=2 | | k/2+31=38 | | -3/7h+17=5 | | m+25/9=8 | | -2=t/1.9 | | 6y=15y+27 | | 3t/4=3 | | 9j-7=3j=38 | | x^2=9-16x | | k/6-6=3 | | 5+2×a=5 | | 17x-6=2(8x) | | (2x-5)-(x^2-3x+1)=0 | | .3x+2=38 | | 17x-6=8x | | 7−2n=1 | | 1/3x+1/2=3(4/5x+1) | | 7x+53=5x+71 | | 3(2x-3)=-7 | | 2(2a-3)+8=50-8 | | 60000/12=x | | 7/8a=26 | | 4x+4=8(x-7 |